
ELSEVIER

Computers
and electronics

Computers and Electronics in Agriculture
27 (2000) 107-125

in agriculture

www.elsevier.com/locate/compag

AppBuilder for DSSTools: an application
develdpment environment for developing

decision support systems in Prolog
Geneho Kim a, Donald Nute av*, H. Michael Rauscher b,

David L. Loftis b
a Artificial Intelligence Cenrer, Room I1 1 Boyd GSRC, The University of Georgia, Athens,

GA 30602, USA
b Bent Creek Experimental Forest, USDA Forest Service, Asheville, NC 288Oi, USA

Abstract

A programming environment for developing complex decision support systems (DSSs)
should support rapid prototyping and modular design, feature a flexible knowledge represen-
tation scheme and sound inference mechanisms, provide project management, and be
domain-independent. We have previously developed DSSTools (Decision Support System
Tools), a reusable, domain-independent, and open-ended toolkit for developing DSSs in
Prolog. DSSTools provides modular design, a flexible knowledge representation scheme, and
sound inference mechanisms to support development of any knowledge based system
components of a DSS. It also provides tools for building the DSS interface and for
integrating other non-Prolog components of a DSS such as simulation models, databases, or
geographical information system, into a multi-component DSS. DSSTools does not provide
project management, and its complex syntax makes rapid prototyping difficult. AppBuilder
for DSSTools is a GUI-based application development environment for developing DSSs in
DSSTools that supports rapid prototyping and project management. AppBuilder’s easy-to-
use dialogues for managing and building knowledge based and top-level control components
of a DSS free developers from having to memorize complex syntax and reduce development
time without sacrificing the flexibility of the underlying toolkit. AppBuilder has been used to
develop the Regeneration DSS, a system for predicting the regeneration of southern
Appalachian hardwoods. AppBuilder is an application development environment for both
prototyping and developing a complete DSS. 0 2000 Elsevier Science B.V. All rights
reserved.

* Corresponding author.

016%1699/00/S - see front matter 0 2000 Elsevier Science B.V. All rights reserved.
PII: SO168-1699(00)00101-0

108 el al . / Compwers and Elecrronics in Agriculture 27 (2000) 107-125

Keywords: Decision support systems; Knowledge based systems; Programming environments; Prolog

1. Introduction

A decision support system (DSS) is an interactive and flexible system that
facilitates improved decision making, by integrating insights of decision makers as
part of the decision making process (Schmoldt and Rauscher, 1996). The goal of a
DSS is to amplify the power of decision makers without usurping their right to use
human judgment and make choices. A DSS attempts to bring together the
intellectual flexibility and imagination of humans with the speed; accuracy, and
tirelessness of the computer. Rauscher (1999) provides a comprehensive review of
DSS for ecosystem management in the US.

Traditional software engineering is a well-developed process for systematically
designing a software product for well-behaved problems - problems that have
known algorithmic solutions. Most DSSs in natural resource management are not
well-behaved problems. Ambiguities, conflicts, internal inconsistencies, lack of
organized solution strategies, institutional shock and confusion, and lack of scien-
tific understanding all contribute to make natural resource management problems
extremely complex. Designing DSSs for such problems can seldom be approached
using classical software engineering methods.

The rapid prototyping approach to software engineering was developed for
domains that have the above characteristics, i.e. ‘when the requirements for the
system or the decision ‘making process cannot be fully known in advance (Press-
man, 1992). Using prototyping methodology, an initial system that focuses on user
interaction is quickly developed and enhanced based on evaluation by the user. This
process of refinement is repeated until the resulting system performs satisfactorily
(Schmoldt and Rauscher, 1996).

A programming environment that supports rapid prototyping of decision support
systems for complex domains is needed. Such a programming environment should
feature:
l short development and learning time;
l flexible knowledge representation schemes and sound reasoning methodologies;
l modular design allowing incremental refinement by parts;
0 support for project management;
l capability to incorporate existing legacy programs and hypertext; and
l a domain-independent environment for developing domain-specific systems.

Short development time and a flat learning curve are the essence of a rapid
prototyping environment. A DSS that preserves trustworthy decision-making
throughout several modifications should employ a flexible knowledge representa-
tion scheme that can handle possible changes in the structure of the data. Inference
mechanisms based on sound theoretical principles are also essential. Modular
design and development is important because some stages of system improvement
involve only parts of the system. Without project management, an inordinate

/Computers and Electronics in Agriculture 27 (.?ooO) 107-125 109

amount of time can be spent managing various files and components in a project.
This is also important for software maintenance, particularly as the lifetime of
software systems increases. Many decision support systems need to work with
existing legacy software such as simulation models and geographic information
systems, and with existing hypertext documents such as Windows help files.
Therefore, the programming environment must provide tools for building interfaces
with these systems and documents. Unlike expert system shells whose programs can
be executed only within the shells, the desired programming environment must be
able to generate domain-specific multi-component applications for a wide range of
domains. To emphasize the application generation capability, we call such a
programming environment an application development environment (ADE).

AppBuilder for DSSTools (AppBuilder for short) is a GUI-based ADE for
developing the top-level control structure and knowledge-based systems component
of decision support systems in any domain. AppBuilder is built on top of
DSSTools, a Prolog toolkit for DSS development (Nute et al. 1995; Kim et al.,
2000). AppBuilder facilitates rapid prototyping of decision support systems by
providing easy-to-use dialogues for managing and building knowledge-based com-
ponents of a system and integrating these with other components written in Prolog
or some other programming language. Using AppBuilder, developers can reduce
development time and eliminate syntax errors without sacrificing the flexibility of
the underlying toolkit, DSSTools. In this paper, we briefly introduce DSSTools and
its limitations, review the relevant literature, and then describe the AppBuilder
ADE. This paper does not discuss tools in AppBuilder in detail. ,A detailed
description of AppBuilder tools can be found in Kim (1999).

2. DSSTools and its limitations

DSSTools is a toolkit based on a blackboard architecture for developing decision
support systems with a major knowledge-based component in Prolog. More infor-
mation about DSSTools can be found in Nute et al. (1995) and Kim et al. (2000).
For detailed discussion of the Prolog programming language, in which DSSTools is
written, consult Covington et al. (1997). Developers can take advantage of a suite
of tools available in DSSTools by using it as it is or modifying it to suit their needs,
thus reducing development time over developing a system from scratch in Prolog.
The modifiability of DSSTools provides a flexibility missing from the typical
commercial expert system or other DSS development tool. DSSTools is open-
ended, meaning that the current suite of tools can be continuously enhanced and
new tools can be added.

DSSTools is designed to support development of multi-component DSSs that
combine knowledge based systems and other kinds of DSS components using a
blackboard architecture. One or more semi-autonomous agents are developed that
have access to the information on the blackboard and can post new information to
the blackboard. These agents are called domain control modules (DCMs). A single
DCM might provide an interface with the user, implement a knowledge-based

110 G. Kim et al. /Computers and Electronics in Agriculture 27 (2000) 107- I25

system, or manage another kind of DSS component developed in Prolog or some
other programming language. DCMs can be independently developed, executed,
and .tested. This modular structure allows incremental refinement by parts - the
parts being DCMs. DCMs do not communicate with each other directly; they
communicate through shared data on the blackboard. DSSTools provides
reusable codes to maintain the blackboard and to provide the DCMs with the
opportunity to interact with the blackboard.

DSSTools provides a rich, flexible fact structure that includes an attribute-ob-
ject-value (AOV) triple, an inference index that may be used to represent degree
of confidence, and the source of a fact. Because there are no restrictions on the
values and the uses of the inference indexes and sources, they are available to
support different inference mechanisms such as fuzzy logic or reasoning with
confidence factors. DSSTools provides backward-chaining and forward-chaining
inference engines, for use with backward-chaining rules and forward-chaining
rules, respectively. These rule types and inference engines form a sound and
widely used standard reasorring mechanism.

DSSTools also provides mterface tools for gathering information from users or
external programs. DSSTools supports six types of GUI dialog screens for han-
dling different types of input. These dialog screens are called query screens
because they provide information that the system needs by querying the user.
DSSTools also features tools for interfacing with foreign components (simula-
tions, spreadsheets, geographical information systems, etc.) and the Windows
help system. A specific page in a Windows help file can be linked to a particular
rule or a specific query screen. Using the DSSTools interface tools, a GUI dialog
screen with a number of input fields can be generated with less than ten lines .of
code.

Although DSSTools provides many enhancements to the native Prolog pro-
gramming environment, the toolkit still fails to provide all the features of an
ADE described above. Developers must type all components of the DSSTools
application by hand. Even for a moderately sized application, the amount of
code one must manage is too large to handle without assistance of project
management tools. To ensure that a DSSTools application works properly, we
need to test components of the application. Both project management and easy
component testing are missing in LPA Win-Prolog, the software environment for
developing applications in DSSTools (LPA Win-Prolog, 1996). DSSTools users
must possess at least a moderate understanding of Prolog programming and
learn the complex syntax for each tool in the toolkit (Kim et al., 2000). This
process takes time, for learning as well as software development, and does not
protect the developer from making frequent syntax errors. Furthermore, to use
the powerful user interface routines in DSSTools, one must master the complex
syntax of each interface type. The deep structured syntax also makes modifica-
tion of the interface difficult. AppBuilder was created as an ADE for DSSTools
to mitigate some of the weaknesses inherent in the toolkit approach to develop-
ing DSSs.

Elecrronics in Agricuhre 27 (2000) 107-125 111

3. Related work

Previously developed toolkits and programming tools provided insight for devel-
opment of AppBuilder. Micro lnterpreter for Knowledge Engineering (MIKE)
(Eisenstadt and Brayshaw, 1990a,b), a knowledge engineering toolkit for building
expert systems in Prolog using the frame knowledge representation structure, is very
close to DSSTools in terms of functionality. One notable difference is that MIKE
can be used with any Prolog programming environment whereas AppBuilder
requires a particular Prolog programming environment, LPA Win-Prolog. Karsai
(1995) introduces a configurable model-based visual programming environment
(VPE) that can be configured for developing systems in various domains. Koseki et
al. (1996) propose an architecture for a VPE for hybrid expert systems. Their visual
environment pointed out the desirability of a visual programming tool for develop-
ing what we call domain control modules. Other systems we reviewed demonstrated
that approaches we have taken are not unique to DSSTools and AppBuilder. Like
DSSTools, THESEUS + + , an object-oriented toolkit for developing high level
user interfaces for 2.5D graphics, separated problem solving knowledge from
GUI-related code (Dingeldein and Lux, 1993). Like AppBuilder, Kim’s QA Builder
(Kim, 1996) features visual editors developed for a particular kind of knowledge
representation scheme. Like AppBuilder, FIELD (Friendly Integrated Environment
for Learning and Development) (Reiss, 1995) provides graphical interfaces. for
existing programming tools that enhance the functionality of the original tool. Since
none of these systems meets our requirements for an ADE, we developed a new
programming environment using DSSTools. We chose DSSTools over other toolk-
its, such as MIKE, because it has been used to develop a real-world application
(Nute et al., 1995) and because it satisfies all of our requirements except short
development time and project management support.

4. AppBuilder for DSSTools

AppBuilder is an ADE for DSSTools that supports short development time and
project management. AppBuilder reduces development time by providing easy-to-
use GUI tools to manage and develop components of a system and by freeing
developers from having to memorize and learn complex syntax of DSSTools
features.

Fig. 1 depicts the relationship between AppBuilder tools and DSSTools compo-
nents. White boxes in the figure represent AppBuilder tools and gray boxes
represent typical components of a DSS developed using AppBuilder. Gray boxes
appearing to the left of the dotted vertical line are non-DSSTools parts of the
system. These will typically include simulations, databases, geographic information
systems, or other DSS components besides the knowledge-based components
developed using AppBuilder. Each AppBuilder tool is linked to a DSSTools
component related to that tool. The Project Window encloses all DSSTools
components to emphasize that it is used to manage all DSSTools components.

112 / Computers and Electronics in Agriculture 27 (2000) 107-125

AppBuilder provides two levels of project management functionality: project-
level and component-level. Project-level’ functionality concerns manipulating
projects, which includes creating a new project and renaming an existing project
thus allowing developers to save different versions of a project in different loca-
tions. It also includes adding files to and removing files from projects. Component-
level functionality involves manipulating components contained in a project.
Examples of components are DCMs, knowledge bases, and user interface screens.
The separation of these two levels of functionality enables developers to focus their
attention either on the project-level as a whole or on the design and implementation
of one component of an application at a time. In this way, whether to use the
bottom-up or top-down software development strategies is left to the discretion of
the developer.

Project-level functionality is provided by the Project Window (Fig. 1). The
Project Window is essentially the command center for the DSS software developer.
In AppBuilder, a project is a set of files that make up a DSSTools application. A
DSSTools application must have one or more domain control module (DCM) files
and exactly one main file that contains start-up code. Optionally, an application

I /
I PROJECli WINDOW /

Non DSSTools
Components

DSSTools Components

Fig. 1. AppBuilder Tools and DSSTools components .

G. Kim er al. /Computers and Elecrronics in Agriculrure 27 (2000) 107-125 113

may contain one or more knowledge base files, one or more domain utility (DUT)
files, Windows help files, and other non-Prolog components that are not tracked by
AppBuilder. Managing projects with less than ten files by hand without a GUI tool
is not difficult. However, when the number of files in a project grows larger than
that, the task of managing a project gets out of hand and AppBuilder becomes
increasingly more valuable.

Another important project-level feature of AppBuilder is project verification.
AppBuilder implements a strategy not just for syntactic error checking, but also for
consistency. In consistent projects, no two rules or queries have the same name, all
files actually exist, and a DCM .that terminates the system exists. Rather than
reinventing the wheel, AppBuilder uses the built-in syntax checking and debugging
capabilities of LPA Win-Prolog.

Component-level functionality is provided by component managers and builders
(Fig. 1). The component managers in AppBuilder are the Fact Manager, the Rule
Manager, and the Query Manager. Component managers allow us to review, add,
modify, or delete components in an application. For some of these functions the
component managers call component builders, specialized dialog screens for creat-
ing and modifying system components. There is a Fact Builder, a Rule Builder, and
a Query Builder. We will see screen images for several of the manager and builder
dialogs when we walk through the development of a DSS using AppBuilder later in
this paper. To reduce the learning time for the user, AppBuilder’s managers have a
uniform ‘look-and-feel’. Builders, on the other hand, are more distinctive because
they must deal with completely different types of components.

5. Designing the Regeneration DSS

An example will illustrate how AppBuilder can be used to develop a fully
functioning knowledge-based DSS. To concentrate on the functionality of App-
Builder, this sample application does not include any non-DSSTools components.
Loftis (1990) describes a conceptual model for predicting the amount and species
composition of regeneration for southern Appalachian hardwood forests based on
the initial floristic composition theory of forest ecology. This theory states that the
individuals of species that form the dominant forest canopy IO years after a heavy
disturbance event come from the initial load of propagules present on the site prior
to the disturbance. The Regeneration DSS requires as input the number, size, and
species of regeneration propagules prior to a disturbance event. The output from
the regeneration DSS is the number, size, and species of forest trees present on the
site 10 years following the heavy disturbance event. AppBuilder was used to
develop the regeneration DSS and Dr David Loftis, Principal Silviculturalist with
the USDA Forest Service’s Bent Creek Experimental Forest in Asheville, NC,
performed the role of domain expert.

Since the input and output requirements for the Regeneration DSS were
well known from the beginning, the major problem definition work concentrated
on the identification of domain control modules, their functionality, and their

114 G. Kim et a/. /Computers and Eiectronics in Agriculture 27 (2000) 107- 125

1. Stand Data
Input DCM ,

2. Rank
Computation l 7. Management +-- 6. Next Action

DCM Option DCM DCM

T &
t

3. Special
Species DCM

v
8. FVS Output

DCM

+

4. Species
5. output

Selection DCM + Generation 8

L Display DCM

Fig. 2. Domain control modules for the Regenerat ion DSS.

interrelationships (Fig. 2). We identified eight separate functions that the DSS
would perform, and a DCM was created for each of these functions. The Stand
Data Input DCM runs first and allows the user to enter new stand data, read an
existing stand data file, or exit the system. Once data is entered or read, the Rank
Computation DCM computes the rank of each species. The rank of a species is a
measure of its competitive advantage during regeneration. Species ranks are used to
compute the likelihood that a certain species will survive after a heavy disturbance.
The Special Species DCM asks the user to select species present in the stand that
are exceptions to the general Regeneration logic. The Species Selection DCM selects
the species that win the competition during regeneration and produce trees in the
overstory. Once the Output Generation and Display DCM generates output in
HTML format and calls the user’s default intemet browser to display it. The Next
Action DCM presents the user with choices. Users can explore management
options, such as removing trees of a certain size and species, or send the output of
the system to a file properly formatted for the Forest Vegetation Simulator (FVS),
a growth simulator developed by USDA Forest Service (Teck et al., 1996). These
two options are handled by the Management Option DCM and the FVS Output
DCM. Users can also exit or analyze another stand data set. A more detailed
description of each DCM and its functionality will be presented in Loftis et al.
(2000).

The Regeneration DSS does not include rules. Instead, the knowledge base
contains a set of facts recording the ranks of different species. An algorithm
implementing the decision process uses information about understory plants present
on the stand prior to the disturbance event, about species present in the canopy

G. Kim er al. / Compurers and Elecrronics in Agricuhre 27 (2000) 107- 125 I’] 5 . L ,;,
,

prior to the disturbance th‘ai‘prdduce stump,sprouts, and about trees present in the
surrounding area to predict which trees will survive as members of the eventual
canopy. This algorithm was written in Prolog and incorporated into the Rank
Computation DCM.

Next, each DCM was analyzed for user interface screens. We determined that we
would need three query screens. One screen asks the user for a site index for the

stand being analyzed. Another asks the user to select special species present in the
stand. The third screen allows users to make a selection among choices that
correspond to the Next Action DCM. The three query screens will be linked to a
previously developed Windows help file that provides an organized synthesis of
knowledge concerning the entire southern Appalachian regeneration domain
(Rauscher and Host, 1990; Rauscher et al., 1997). The Regeneration DSS also
needed a spreadsheet like input screen to enable users to enter stand data and a
system to generate output as an HTML document. Since AppBuilder does not
support such spreadsheets or generation of HTML documents, we built both the
spreadsheet input screen and HTML document generation routines without using
AppBuilder. Fig.’ 3 shows the spreadsheet query screen and Fig. 4 shows an
example of output from the HTML report generator displayed using Netscape. We
plan to add the HTML report generator and the spreadsheet query screen to our

Fig. 3. Stand data spreadsheet query screen.

116 er al. / Computers ond Elecrronics in Agriculture 27 (2000) 107-125

Fig. 4. An HTML report from the Regeneration DSS.

next version of DSSTools and AppBuilder; so we developed them to work
independently of any code specific to the Regeneration DSS.

6. Implementing the Regeneration DSS using AppBuilder

Having developed the application design, we were ready to implement the first
prototype. Fig. 5 shows the LPA Win-Prolog console window after AppBuilder is
loaded. Notice that an AppBuilder menu item has been added to the menu bar and
that all the DSSTools and AppBuilder components have been consulted. The first
step is to create a new project. When we click on New DSST Project in the
AppBuilder menu, we must provide a name for the new project and choose the
directory in which project files will be saved. Naming the project Regen, the Project
Window is displayed (Fig. 6) showing the name of the main project file (regen.pl)
and an initially unnamed knowledge base file for the project (untitled.kb). Clicking
on regen.pl in the Project Window, then clicking the Edit button, we are presented
with a text window displaying the newly created main project file (Fig. 7). Notice

G. Kim el al. / Computers and Elecrronics in Agriculture 27 (2000) 107- 125 117

Fig. 5. The LPA Win-Prolog console with the AppBuilder Menu added.

Fig. 6. The Project Window with the newly-created Regeneration project.

118 G. Kim et al. / Compurers and Electronics in Agricuirure 27 (2000) 107-125

Fig. 7. The main project file for the Regeneration DSS.

that regen.pl already contains a header where important information about the file
can be placed. If we click the Properties button in the Project Window dialog, we
can provide author names and copyright information. As each new file is added to
the project, a header is automatically created for the file and the author names and
copyright information are placed in the header. Notice also that regen.pl contains
some initial code required in any DSSTools main file, although most of this initial
code is not visible in this screen image.

After the project is created, we name the initial knowledge base (in this case,
Regenl.kb) and add the DCMs, DSSTools domain utility files (with extension
.dut), and Windows Help files to be included in the project. A domain utility file
contains domain specific codes used by several different DCMs. The user may add
these files to the project and develop them one at a time. However, we have found
it helpful to create every DCM file that we think we will need and add code to the
DCM that simply looks for a request for the DCM to act. When such a request is
found on the blackboard, the system displays a message telling the. user the DCM
is active. We may also include code that puts requests on the blackboard for one or
more additional DCMs to act. This allows us to test the flow of control between the
DCMs before we begin serious development of any single DCM.

The Project Window in Fig. 8 shows a complete list of all the files in the
Regeneration DCM. We can chck on any DCM file in the list and edit it or test it.
We can also test the entire application by clicking on the main project file (the one
with the .pl extension) and then clicking the Test button. Before testing either an

G. Kim et al. /Computers and Electronics in Agriculture 27 (2000) 107-125 119

individual DCM or an entire application, a Blackboard Editor dialog (Fig. 9)
appears. This allows the user to type in a set of test facts to appear on the
blackboard, to save a set of test facts once entered, or to load a set of previously
saved test facts to the blackboard before starting the DCM or application. This
facilitates modular testing of system components as they are developed.

Fig. 8. The Project Window with the complete Regeneration project.

De?e~mineDisturbance.DCh
~Hea~~isturbancC.dcm
NqDistL+anyze.DCM
e&h-daia1n.dc.m

Fig. 9. The Blackboard Editor.

120 G. Kim ez al. / Compurers and Elecrronics in Agricullure 27 (2000) 107-125

Fig. 10. The Fact Manager displaying facts in the Regeneration knowledge base.

Fig. Il. The Fact Builder during editing of a fact in the Regeneration knowledge base.

The next step was to use the Fact Manager and Builder tools to write facts to the
Regeneration project knowledge-base file. Figs. 10 and 11 show the Fact Manager
and Fact Builder as they were used to add facts to the Regeneration knowledge
base. This set of facts is used to determine the hkelihood that a certain species will
survive after a heavy disturbance. The majority of the facts added were similar to

et al. /Computers and Electronics in Agriculture 27 (2000) 107-125 1 2 1

each other, requiring only one or two changes. Thus, we used the ‘clone’ function
of the Fact Manager. With the cloning function, we were able to add more than 90
facts in less than half an hour. Without AppBuilder, it would have taken us
considerably longer including the time to debug any potential syntax and structural
errors.

Next, a test input data set was created using the Fact Manager and Fact Builder.
We created a new KB file in the project and added facts to the KB file. After facts
were built, rules would normally be built, using the Rule Manager and the Rule
Builder. Since Regeneration uses no rules, this step was skipped. The three required
query screens were created and tested using the Query Manager and the Query
Builder. We linked each query screen to a specific page in the Regeneration help file
that contains detailed explanation for each screen. Fig. 12 shows one of the query
screens, the Special Species query screen.

After developing the necessary query screens, we returned to development of the
eight DCMs. We replaced the original temporary displays in the Stand Data Input
DCM, Special Species DCM, and the Next Action DCM with the DSSTools query
screens we had developed. We also developed the spreadsheet query screen that is
called by the Stand Data Input DCM. The algorithms for the Rank Computation
DCM and the Species Selection DCM were added to these DCMs, and the query
screens were removed from all DCMs that would not communicate directly with

Fig. 12. The Special Species query screen.

122 Kim et al. /Computers and Electronics in Agriculture 27 (2000) 107-125

the user in the final system We then developed the routines that generate output as
an HTML document. All development of the actual DCMs was done in the
corresponding file text windows like the one in Fig. 6. Since almost anything can be
included in a DCM file, there is no DCM builder dialog. The entire system was
tested from the Project window, again using the Blackboard Window.

As the final step in the development process, we generated a stand-alone
application by clicking the Build Application button from the Project Window.
AppBuilder automatically validated the project by conducting various internal
consistency checks before generating the stand-alone application, Because building
the system using the builders and managers eliminates syntax errors and because
AppBuilder does not allow any inconsistent addition or modification of compo-
nents, the Regeneration project was consistent and free of syntactic errors.

7. Discussion

Although no formal, independent evaluation has yet been performed, AppBuilder
was evaluated based on our experience of building applications with it. The
evaluation criteria for AppBuilder address two aspects of the system: functionality
and capacity. The evaluation criteria regarding the functionality of the system are
identical to the requirements of an ADE as discussed previously. AppBuilder
satisfies all these requirements. AppBuilder provides a set of dialogues to build and
manage various components of a DSSTools application. The Project window
provides project management capability, and its testing facility eases modular
design and testing. AppBuilder does not restrict domains for which it can generate
domain-specific applications. Although it does not provide an explicit version
control function, the ability to rename projects can be used to handle different
prototypes and versions. Other requirements are satisfied simply because the
underlying toolkit, DSSTools, satisfies them.

The criteria used to evaluate AppBuilder that address the capacity of an ADE
with respect to its underlying toolkit are:
l Efficiency: how efficient is it to develop a DSSTools application using the ADE

as opposed to without it?
l Completeness: can an ADE generate all possible applications that can be built

just using its underlying toolkit?
AppBuilder is efficient. The amount of time it takes to learn AppBuilder is no

more than the time taken to learn DSSTools. In fact, using AppBuilder is a quick
way to learn to use DSSTools. Moreover, developing Regeneration DSS in App-
Builder demonstrated that AppBuilder clearly reduces development time in both the
implementation and testing stages of an application development process. In the
implementation stage, we did not have to learn the complete syntax of DSSTooh.
This alone saves time. Furthermore, if we build a query screen using a text editor
and try running it, the probability that it will run properly the first time is very
small due to the complexity of the syntax. The query may not contain syntax errors
but be improperly structured. Then the query will not run although there are no

.G. Kim et al. / Computers and Electronics in Agriculture 27 (2000) 107-125 123

syntax errors. Finding bugs caused by improperly structured DSSTools components
that are legitimate Prolog code normally consumes significant amounts of resources
because such errors cannot be detected at compile time and because Prolog cannot
find them. If we use the Query builder, however, a query screen wil,l run the first
time almost always because AppBuilder ensures that the query is error-free. This is
equally true for facts and rules. Hence, AppBuilder saves significant resources that
might otherwise be used in finding and correcting errors.

The resources spent in the testing stage were also reduced. Most of the time, we
want to verify that a DCM or an entire application works with a number of
different configurations of the blackboard and not just with one. To test a DCM
without AppBuilder, we first have to modify the contents of the blackboard either
by writing a file that contains the desired contents of the blackboard or by
executing a series of blackboard modification functions DSSTools provides. Then
we should make sure that the modifications we make are error-free. If they contain
errors, the DCM we test will not run properly. In that case, it is not easy to
determine whether the bug is in the DCM or in the modifications we made to the
blackboard. We must repeat these cumbersome steps for each configuration we
want to test the DCM against. In AppBuilder, we simply click the Test button after
selecting the main file in the project. Then using the Blackboard Window, we can
easily modify the contents of the blackboard. We can even save the changes we
make for later use. Since the Blackboard Window does not allow improperly
structured modifications, we can rest assured that if the DCM does not run
properly, it is the DCM that contains a bug and not the blackboard modification
we made. We can even create a knowledge base that contains a desired configura-
tion using AppBuilder’s component managers and builders. To do so, we simply
create a new knowledge base file and insert it into the project. After we have tested
the desired DCM, we can remove the file from the project without affecting other
parts of the project. This is what we did with the Regeneration DSS. We can test
the entire application just as we would test individual DCMs. Testing a query
screen is also easier. Once we create a new query screen, we simply click the Test
button to run the query. Without AppBuilder, we would have to call a specific
DSSTools routine with proper arguments to test a query screen.

The question whether AppBuilder is complete with respect to DSSTools cannot
be answered with a simple yes or no. AppBuilder allows us to manage all the
components of a DSSTools application and it provides tools to build major
components of a DSSTools application: facts, rules, and queries. But it does not
provide the same kind of facility for constructing DCMs. Unlike facts, tools, and .
queries, a DCM does not consist of some definite set of parts that never alter. We
can include anything in a DCM. In the case of the Regeneration DSS, we included
special algorithms that capture the logic of choosing winners in a regeneration
scenario and we included a custom spreadsheet interface screen. We cannot keep
the open-ended architecture of a toolkit like DSS and also anticipate every domain
specific task a developer might need to incorporate into an application. So the best
we can do is to build the headers and first bits of code for each DCM and provide
text editing screens where the developer can write the rest of the DCM. The

124 G. Kim et al. /Compurers and Elecwonics in Agriculture 27 (2000) 107-125

strength of a toolkit is flexibility, and the strength of an ADE is that it makes it
easier for the developer to do routine tasks. These two goals are not entirely
compatible since flexibility means making it possible to do what is not routine. The
combination of DSSTools and AppBuilder represent a compromise.

Developers should remember that AppBuilder works only with LPA Win-Prolog.
We also emphasize that AppBuilder inherits all the limitations of DSSTools. While
DSSTools is designed to support development of knowledge based systems and to
simplify integration of other kinds of DSS tools with a knowledge based system,
neither DSSTools nor AppBuilder provides the tools to develop those additional
DSS components such as simulations, databases, or geographical information
systems.

To enhance project management functionality, we plan to add a printing function
that produces a hard copy of a project and of component files in a project. This will
help developers document their code. In addition, we plan to develop a visual tool
for designing DCM execution flow. This would enable developers to visualize
system behavior and to design DCMs more effectively. As we mentioned,
DSSTools is open-ended and new tools will be added to it. Hence, AppBuilder will
also continue to enhance its features to help manage new tools added to DSSTools.

Acknowledgements

The development of AppBuilder for DSSTools was funded by the USDA Forest
Service, Bent Creek Experimental Forest, Asheville, NC through a cooperative
research agreement with the Artificial Intelligence Center of the University of
Georgia.

References

Covington, M.A., Nute, D., Vellino, A., 1997. Prolog Programming in Depth. Prentice-Hall, Upper
Saddle River, NJ.

Dingeldein, D., Lux, G., 1993. THESEUS + $: a high level user interface toolkit for graphical
applications. Comput. Graphics 17 (2), 147-154.

Eisenstadt, M., Brayshaw, M., 1990a. A knowledge engineering toolkit - your own knowledge
engineering toolkit for building expert systems. BYTE 15 (lo), 268-282.

Eisenstadt, M., Brayshaw, M., 1990b. A knowledge engineering toolkit, part 2 - your own knowledge
engineering toolkit for building expert systems. BYTE 15 (12), 346-370.

Karsai, G., 1995. A configurable visual programming environment: a tool for domain-specific program-
ming. IEEE Comput. 28 (3), 36-44.

Kim, M.Y., 1996. QA Builder: a visual toolkit for building multimedia knowledge-based systems with
immediate feedback. In: Proceedings of the lntemational Conference on Multimedia Computing and
Systems, Los Alamitos, California. IEEE, pp. 269-273.

Kim, G., 1999. AppBuilder for DSSTools. MS Thesis, Artificial Intelligence Center, University of
Georgia, Athens, GA.

Kim, G., Nute, D., Rauscher, H.M., Maier, F., 2000. DSSTools 2000: A Toolkit for the Development
of Decision Support Systems in Prolog. USDA Forest Service, Southern Research Station, Asheville,
NC, GTR-SRS-XXX in press.

G. Kinz et al. / Computers and Electronics in Agrirulrure 27 (2000) 107-125 125

Koseki, Y., Tanaka, M., Maeda, Y., Koike, Y., 1996. Visual Programming Environment for Hybrid
Expert Systems. Expert Syst. Applications 10 (3-4), 481-486.

Loftis, D.L., 1990. Regeneration of southern hardwoods: some ecological concepts. In: Proceedings of
the National Silvicultural Workshop, July 10-13, 1989, Petersburg, AL. US Department of
Agriculture, Forest Service, Washington, DC, pp. 139-143.

Loftis, D.L., Rauscher, H.M., Kim, G., Nute, D.E., Rushton, N., 2000. Regeneration: A Decision
Support System for Predicting Southern Appalachian Hardwood Regeneration. USDA Forest
Service, Southern Research Station, Ashevil le, NC, GTR-SRS-XXX (in preparation).

LPA Win-Prolog, 1996. Version 3.5. Computer software. Logic Programming Associates.
Nute, D.E., Rauscher, H.M., Zhu, G., Chang, Y., Host, G.E., 1995. A toolkit approach to developing

forest management advisory system in Prolog. Al Applicat ions 9 (3), 39-58.
Pressman, R.S., 1992. Software Engineering: A Practit ioner’s Approach, third ed. McGraw-Hill , New

York.
Rauscher, H.M., 1999. Ecosystem management decision support for federal forests in the US: a review.

Forest Ecol. Manag. 114, 173-197.
Rauscher, H.M., Host, G.E., 1990. Hypertext and Al: a complementary combination for knowledge

management, Al Applications 4 (3), 56-61.
Rauscher, H.M., Loftis, D.L., McGee, C.E., Worth, C.V., 1997. Oak regeneration: a knowledge

synthesis. Compiler 15 (I), 51-52 insert, three disks, 3.8 megabytes; 748 chunks, 742 links
(electronjc).

Reiss, S.P., 1995. The Field Programming Environment: A Friendly Integrated Environment for
Learning and Development. Kluwer, Boston, MA.

Schmoldt, D.L., Rauscher, H.M., 1996. Bujlding Knowledge-Based Systems for Natural Resource
Management. Chapman and Hall , New York.

Teck, R., Moer, M., Eav, B., 1996. Forecasting ecosystems with the forest vegetation simulator. J . For.
94 (12), 7-10.

